Preferred location of droplet collisions in turbulent flows.
نویسندگان
چکیده
This study investigates the local flow characteristics near droplet-droplet collisions by means of direct numerical simulation of isotropic cloudlike turbulence. The key finding is that, generally, droplets do not collide where they preferentially concentrate. Preferential concentration is found to happen as expected in regions of low enstrophy (vorticity magnitude), but collisions tend to take place in regions with significantly higher dissipation rates (up to a factor of 2.5 for Stokes unity droplets). Investigation of the droplet history reveals that collisions are consistently preceded by dissipative events. Based on the droplet history data, the following physical picture of a collision can be constructed: Enstrophy makes droplets preferentially concentrate in quiescent flow regions, thereby increasing the droplet velocity coherence, i.e., decreasing relative velocities between droplets. Strongly clustered droplets thus have a low collision probability, until a dissipative event accelerates the droplets towards each other. We study the relation between the local dissipation rate and the local collision kernel and vary the averaging scale to relate the results to the globally averaged collision and dissipation rates. It is noted that, unlike enstrophy, there is a positive correlation between the dissipation rate and collision efficiency that extends from the largest to the smallest scales of the flow.
منابع مشابه
A stochastic droplet collision model with consideration of impact efficiency
A stochastic droplet collision model (Sommerfeld [9]), based on the creation of a fictitious collision partner is described, taking into account impact efficiencies. The model of O’Rourke [5] is considered to predict the outcome of water-droplet collisions, being grazing or coalescing, and to predict post-collision velocities. The relevance of impact efficiencies is discussed for water droplet ...
متن کاملTurbulent combustion of polydisperse evaporating sprays with droplet crossing: Eulerian modeling of collisions at finite Knudsen and validation
The accurate simulation of the dynamics of polydisperse sprays in unsteady gaseous flows with large-scale vortical structures is both a crucial issue for industrial applications and a challenge for modeling and scientific computing. In a companion paper, we have shown the capability of the Eulerian multi-fluid model to capture the dynamics and evaporation of such sprays and extended it in order...
متن کاملEffect of droplet interaction on droplet-laden turbulent channel flow
We present results of direct numerical simulation of heat transfer and droplet concentration in turbulent flow of a mixture of dry air, water vapor, and water droplets in a differentially heated channel. In particular, we study the effects of droplet collisions by comparing results of simulations with and without droplet collision model for several overall droplet volume fractions. The results ...
متن کاملEulerian-lagrangian Modelling with Stochastic Approach for Droplet-droplet Collisions
In recent years, there has been growing interest to use computational fluid dynamics (CFD) for exploring dropletparticles interaction under the turbulent flow of air inside spray dryer systems. The final goal is to predict the dried solid particle size and mass flux distributions under the conditions of collision, coalescence and agglomeration of the droplets and particles. The coarse-grained s...
متن کاملCollisionExplorer: A Tool for Visualizing Droplet Collisions in a Turbulent Flow
Direct numerical simulations(DNS) are producing large quantities of data through their results. Though visualization systems are capable of parallelization and compression to handle this, rendering techniques which automatically illustrate a specific phenomena hidden within larger simulation results are still nascent. In a turbulent flow system, flow properties are volumetric in nature and cann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 3 شماره
صفحات -
تاریخ انتشار 2014